

XL252

### 特点

■ 测量范围:表压-40kPa~40kPa

■ 典型工作电压: 3.3V

■ 工作温度范围: -40℃~125℃

■ 适用于无腐蚀性的气体

■ I<sup>2</sup>C数字接口

■ SOP6封装

### 应用

- 真空负压检测
- 吸尘器
- 按摩椅
- 电子血压计

### 描述

XL252是采用MEMS技术制作的压阻式表压传感器。内置温度传感器及信号调理芯片,对传感器的偏移、温漂和非线性进行数字补偿,可输出高精度的压力值和温度值。提供I<sup>2</sup>C通讯协议接口,抗干扰能力强。XL252采用标准的SOP6封装,具有优异的精度与可靠性,可广泛运用于家用电器、消费电子、工业控制等领域。






图 1. XL252 封装



XL252

## 引脚配置

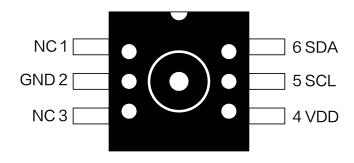



图 2. XL252 引脚配置

## 表 1.引脚说明

| 引脚号 | 引脚名称 | 描述                    |
|-----|------|-----------------------|
| 1   | NC   | 悬空引脚。                 |
| 2   | GND  | 接地引脚。                 |
| 3   | NC   | 悬空引脚。                 |
| 4   | VDD  | 电源正极。                 |
| 5   | SCL  | I <sup>2</sup> C 时钟线。 |
| 6   | SDA  | I <sup>2</sup> C 数据线。 |

## 订购信息

| 产品型号  | 打印名称  | 封装方式 | 环保认证      | 包装类型   |
|-------|-------|------|-----------|--------|
| XL252 | XL252 | SOP6 | RoHS & HF | 70 只每管 |



XL252

### 方框图

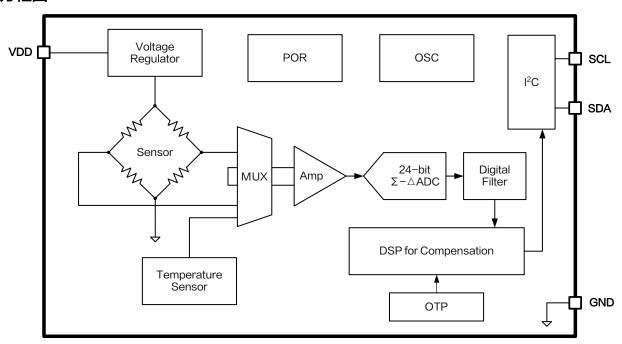



图 3. XL252 功能方框图

### 绝对最大额定值(注1)

| 参数          | 符号                                 | 值                        | 单位 |
|-------------|------------------------------------|--------------------------|----|
| 输入引脚电压      | $V_{DD}$                           | -0.3~3.6                 | V  |
| SCL、SDA引脚电压 | V <sub>SCL</sub> /V <sub>SDA</sub> | $-0.3 \sim V_{DD} + 0.3$ | V  |
| 工作温度        | T <sub>A</sub>                     | -40 ~ 125                | °C |
| 最大结温        | TJ                                 | <b>−40 ~ 150</b>         | °C |
| 贮存温度范围      | T <sub>STG</sub>                   | <b>−65 ~ 150</b>         | °C |
| 引脚温度(焊接10秒) | T <sub>LEAD</sub>                  | 260                      | °C |
| ESD(人体模型)   |                                    | >3000                    | V  |

**注 1:** 超过绝对最大额定值可能导致芯片永久性损坏,在上述或者其他未标明的条件下只做功能操作,在绝对最大额定值条件下长时间工作可能会影响芯片的寿命。



XL252

## XL252 特性

T<sub>A</sub> = 25℃, V<sub>DD</sub>=3.3V, 测量介质: 空气, 图4系统参数测量电路, 除非特别说明。

| 参数           | 条件                    | 最小值 | 典型值   | 最大值 | 单位            |
|--------------|-----------------------|-----|-------|-----|---------------|
| 供电电压         |                       | 1.8 | 3.3   | 3.6 | V             |
| 压力范围         |                       | -40 |       | 40  | kPa           |
| SCL/SDA 上拉电阻 |                       |     | 4.7   |     | kΩ            |
| 待机电流         |                       |     | 50    |     | nA            |
| 工作电流         |                       |     | 500   |     | uA            |
| 电源抑制比 PSRR   | V <sub>DD</sub> =1.8V | 17  |       |     | dB            |
| 压力数据 ADC 分辨率 |                       |     | 24    |     | Bits          |
| 压力测量精度       |                       |     | ±0.5  |     | %FS           |
| 零点温度漂移       |                       |     | ±0.03 |     | %FS/℃         |
| 满量程温度漂移      |                       |     | ±0.03 |     | %FS/℃         |
| 温度数据 ADC 分辨率 |                       |     | 16    |     | Bits          |
| 温度测量精度       |                       |     | ±0.5  |     | ${\mathbb C}$ |
| 时钟脉冲频率       | I <sup>2</sup> C 通讯   |     |       | 3.4 | MHz           |
| 测量频率         |                       | 5   |       | 100 | Hz            |
| 过载压力         |                       |     | 3x    |     | Rated         |
| 爆破压力         |                       |     | 5x    |     | Rated         |

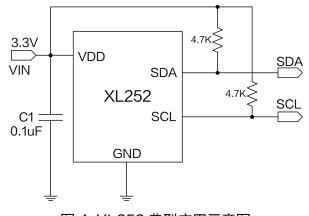



图 4. XL252 典型应用示意图



XL252

#### I<sup>2</sup>C 通讯协议

XL252 使用  $I^2C$  总线协议与外部进行通讯。所有数据的通讯都是从 MSB 开始,默认的 7bit  $I^2C$  设备地址为 0x78。

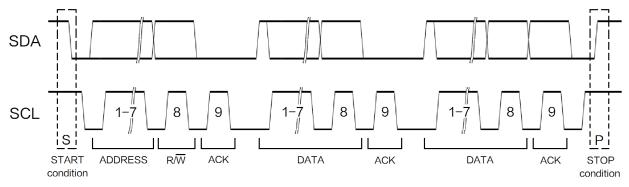



图 5. I2C 时序图

#### **START Condition**

SDA 由空闲高状态转换为低状态,这时 SCL 保持高。这也能在传输过程中重复发送 start condition,这预示传输将会重新开始而没有中间的停止位。

#### **Address Bits**

在第一个字节传输过程中,前 7-bits 提供设备的指定地址,默认为 0x78,这个地址的设备将会应答本次通讯。

#### Read/Write Direction Bit

在第一个字节传输过程中,最后 1bit 指出通信的读或写。0 表示主设备写操作,1 表示主设备读操作。如果主设备请求读操作,则主设备将在后来的字节控制 SDA 线输出数据。

#### Data Byte

所有其他的字节,除了地址和读/写位,在 SDA 上传输被认为是通信的数据字节。

#### Acknowledge or Not Acknowledge Bit

应答位用来告诉发送者字节已经接收到。设备接收到数据需要应答每个字节,包括地址字节。 在这个时刻,发送数据的总线设备停止驱动 SDA 线并且 SDA 线被拉高。不应答一个字节,接收 设备不需要做任何事。应答一个字节,接收设备需要把 SDA 拉低。

一个接收从设备不需要应答,如果从设备不是寻址的设备或者设备不能处理接收的字节。主设备不应答,如果主设备在接收中并且想结束通信。如果遇到不应答,设备传输数据需要产生一个停止位。

#### **STOP Condition**

SDA 从低状态转换到高状态,而且 SCL 保持高。这个结束 I<sup>2</sup>C 通信。



XL252

## I<sup>2</sup>C 接口



图 6. I2C 接口操作

XL252 I<sup>2</sup>C 接口的任何响应都应由 status 字节开始,紧接着是数据,返回的数据内容基于前一条指令。如果重复 I<sup>2</sup>C 读指令,则将多次读到相同的数据,如果下一条指令不是 I<sup>2</sup>C 读指令,则前一次数据无效。

#### 表 2. Status 字节比特位描述

| 比特位  | 意义         | 描述                                         |
|------|------------|--------------------------------------------|
| Bit7 | 保留         | 固定为 0                                      |
| Bit6 | 上电指示       | 1设备上电;0设备掉电                                |
|      |            | 1设备忙,表明最近一次 I2C 指令所要求读取的数据还未有              |
| Bit5 | 忙闲指示       | 效。如果设备忙,新的指令将不被处理。                         |
|      |            | 0表明最近一次 I <sup>2</sup> C 指令所要求的数据已经准备好被读取。 |
| Bit4 | 保留         | 固定为 0                                      |
| Bit3 | 工作状态       | 0 仅在接收到 I <sup>2</sup> C 指令后启动一次测量;        |
|      | 工作人心       | 1 用于测试及校准,一直保持上电状态。                        |
|      |            | 0表示OTP存储器数据完整性测试(CRC)通过;                   |
| Bit2 | 存储器数据完整性指示 | 1表示完整性测试失败。                                |
| DILZ | 行相合数据元罡注阻小 | 对数据完整性的测试只在上电过程中(POR)计算一次,                 |
|      |            | 被写入的新 CRC 值只能在接下来的 POR 之后使用。               |
| Bit1 | 保留         | 固定为 0                                      |
| Bit0 | 保留         | 固定为 0                                      |

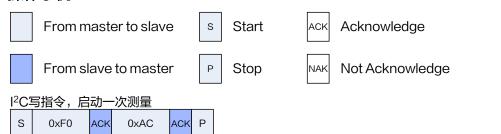


XL252

# I<sup>2</sup>C 指令

| 指令(byte)  | 返回值                                | 描述                                                            | NOR         | CMD         |
|-----------|------------------------------------|---------------------------------------------------------------|-------------|-------------|
| 0xAC      | 24 位校准后<br>的压力值<br>16 位校准后<br>的温度值 | Get_Cal<br>使用 OTP 中的配置进行整体测量,并把校准后<br>的压力值和温度值写入接口            | <b>&gt;</b> | <b>&gt;</b> |
| 0xB0~0xBF | 24 位校准后<br>的压力值<br>16 位校准后<br>的温度值 | Get_Cal_S<br>与 Get_Cal 几乎一样,但过采样率不由 OTP 指<br>定,而由指令直接指定。参考下表。 | <           | <           |

# Get\_Cal\_S 指令


| 0xBX 指令(HEX)  | 功能                        | 描述            |             |  |  |  |
|---------------|---------------------------|---------------|-------------|--|--|--|
| X 的第[3]bit    | 测量温度时 ADC 的过采<br>样率 OSR_T | 0:4x 过采样率     | 1:8x 过采样率   |  |  |  |
|               |                           | 000:128x 过采样率 | 100:8x 过采样率 |  |  |  |
| V 65年[2.0]b;# | 测量压力时 ADC 的过采             | 001:64x 过采样率  | 101:4x 过采样率 |  |  |  |
| X 的第[2:0]bit  | 样率 OSR_P                  | 010:32x 过采样率  | 110:2x 过采样率 |  |  |  |
|               |                           | 011:16x 过采样率  | 111:1x 过采样率 |  |  |  |

XL252 仅在接收到相应的  $I^2$ C 指令后才会启动一次压力和温度的测量,完成测量后自动进入深度休眠以节省功耗。



XL252

#### 操作示例



I2C读出状态字及5字节校准后的压力和温度值

| S | 0xF1 | ACK | 0x00 | ACK | 0xE3 | ACK | 0x24 | Ack | 0xC4 | ACK | 0x4D | ACK | 0xE4 | NAK | Р |
|---|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|---|

图 7.1°C 操作示例

0xF0 表示默认的 7bits  $I^2C$  传感器从机设备地址 0x78,最后 1bit 为 0 表示主设备进行写操作。0xAC 为指令字节,启动从机传感器进行一次测量。

发送完指令后,待从机传感器测量结束,再发读取测量数据的指令。0xF1 表示默认的 7bits I<sup>2</sup>C 传感器从机设备地址 0x78,最后 1bit 为 1 表示主设备进行读操作。读取的第一个字节为状态字,接着读取的三个字节为压力数值,最后两个字节为温度数值。

## 数据换算

读到校准数据后,需要以 AD 值形式表示的无符号数进行简单的换算。

如图 7 所示,读到的校准数据为: 0x00 0xE3 0x24 0xC4 0x4D 0xE4

0x00 为状态字, bit5 为 0 表明设备非忙,可以读取数据,其他比特位描述见表 2。

0xE3 0x24 0xC4 三个字节为压力校准值。

0x4D 0xE4 两个字节为温度校准值。

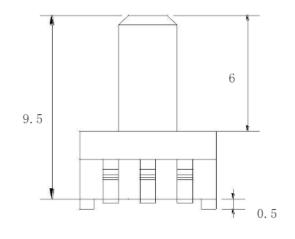
#### 压力校准值换算:

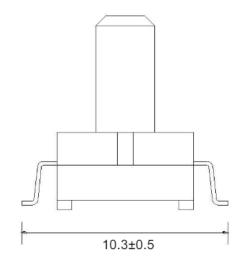
校准时使用的量程为-40kPa~40kPa,对应的 AD 输出为 1677722~15099494(10% AD~90%AD)。

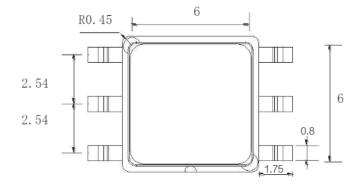
代入 0xE3 0x24 0xC4, 可计算得到实际压力值为 38.73kPa。

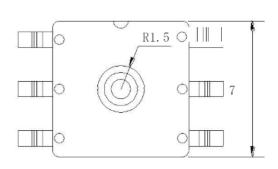
#### 温度校准值换算:

温度的校准范围规定为-40℃~150℃。由于读到的校准数据是以百分比形式表示的,这个百分比在数值上等于换算十进制数与 16bits 无符号数的最大值(65535)之比。


代入 0x4D 0xE4, 可计算得到实际温度值为 17.81℃。





XL252


## 物理尺寸

## SOP6









以上数据公差±0.05mm,除非特别说明。



XL252

### 重要申明

XLSEMI 保留在任何时间、在没有任何通报的前提下,对所提供的产品和服务进行更正、修改、增强的权利。XLSEMI 不对 XLSEMI 产品以外的任何电路使用负责,也不提供其专利权许可。

XLSEMI 对客户应用帮助或产品设计不承担任何责任。客户应对其使用 XLSEMI 的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

XLSEMI 保证其所销售的产品性能符合 XLSEMI 标准保修的适用规范,仅在 XLSEMI 保证的范围内,且 XLSEMI 认为有必要时才会使用测试或者其他质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

对于 XLSEMI 的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。XLSEMI 对此类篡改过的文件不承担任何责任。

有关最新的产品信息,请访问 www.xlsemi.com。